
Doug Tidwell
Cloud Computing Evangelist, IBM
dtidwell@us.ibm.com

Session 7665

Open Cloud Computing with the
Simple Cloud API and Apache libcloud

Agenda

• Portability and interoperability
• A few words about APIs
• The Simple Cloud API

• Storage
• Queues
• Documents

• Controlling VMs with Apache libcloud
• Resources / Next steps

The problem

Vendor lock-in

• If there’s a new technology, any talented programmer will
want to use it.
• Maybe the shiny new thing is appropriate for what we’re

doing.
• Maybe not.
• We’re probably going to use it anyway.

• The challenge is to walk the line between using the
newest, coolest thing and avoiding vendor lock-in.

• In writing flexible code for the cloud, there are two key
concepts:
• Portability is the ability to run components or systems

written for one cloud provider in another cloud provider’s
environment.

• Interoperability is the ability to write one piece of code that
works with multiple cloud providers, regardless of the
differences between them.

Portability and Interoperability

How standards work

• For a standards effort to work, three things have to
happen:
• The standard has to solve a common problem in an elegant

way.
• The standard has to be implemented consistently by

vendors.
• Users have to insist that the products they use implement the

standard.

How standards work

• All three things have to happen.
• If the standard doesn't solve a common problem, or if it

solves it in an awkward way, the standard fails.
• If the standard isn't implemented by anyone, the standard

fails.
• If customers buy and use products even though they don't

implement the standard, the standard fails.

Portability

• The portability of your work depends on the platform you
choose and the work you're doing.
• A GAE application
• An Azure application
• An AMI hosting an application container
• A SimpleDB database
• An Amazon RDS database

Interoperability

• Discussions of openness often focus on leaving one cloud
provider and moving to another.

• In reality, it's far more common that you'll have to write
code that works with multiple providers at the same time.

A few words about APIs

Levels of APIs

• How developers invoke a service:
• Level 1 – Write directly to the REST or SOAP API.
• Level 2 – Use a language-specific toolkit to invoke the REST

or SOAP API.
• Level 3 – Use a service-specific toolkit to invoke a higher-

level API.
• Level 4 – Use a service-neutral toolkit to invoke a high-level

API for a type of service.

Level 1 – REST and JSON

• Sample request:
/ws/IMFS/ListFolder.ashx?sessionToken=
8da051b0-a60f-4c22-a8e0-d9380edafa6f
&folderPath=/cs1&pageNumber=1
&pageSize=5

• Sample response:
{ "ResponseCode": 0, "ListFolder":

{ "TotalFolderCount": 3,
"TotalFileCount": 3215,
"PageFolderCount": 3,
"PageFileCount": 2, ...}}

Level 1 – SOAP and XML

• Sample request:
<ListFolderRequest>

<SessionToken>
8da051b0-a60f-4c22-a8e0-d9380edafa6f

</SessionToken>
<FolderPath>/cs1</FolderPath>
<PageNumber>1</PageNumber>
<PageSize>5</PageSize>

</ListFolderRequest>

Level 1 – SOAP and XML

• Sample response:
<Response>
<ResponseCode>0</ResponseCode>

<ListFolder>
<TotalFolderCount>3</TotalFolderCount>
<TotalFileCount>3215</TotalFileCount>
<PageFolderCount>3</PageFolderCount>
<PageFileCount>2</PageFileCount>
<Folder>

<FolderCount>0</FolderCount>
<FileCount>1</FileCount>
<Name>F8AChild</Name>

...

Level 2 – Language-specific

• A PHP request to a REST service:
• file_get_contents('.../ws/IMFS/ListFolder.ash
x?sessionToken=
8da051b0-a60f-4c22-a8e0-...')

• A PHP request to a SOAP service:
• $param = array(...,

'FolderPath' => '/cs1',
'PageNumber' => 1, ...);

• $soapClient->call('listFolder',
$param, $namespace);

Level 3 – Service-specific

• Sample PHP request to list the contents of an S3 bucket:
• $s3-> getObjectsByBucket('cs1');

• Sample PHP request to list the contents of a folder in
Nirvanix IMFS:
• $imfs->listFolder

(array ('folderPath' => '/cs1',
'pageNumber' => 1,
'pageSize' => 5));

Level 4 – Service-neutral

• Sample PHP request to list the contents of a folder:
• $storage->listItems('cs1');

• This works for S3, Nirvanix, GoGrid, etc.

The Simple Cloud API

simplecloud.org

The Simple Cloud API

• A joint effort of Zend, GoGrid, IBM, Microsoft, Nirvanix and
Rackspace
• But you can add your own libraries to support other cloud

providers.
• The goal: Make it possible to write portable, interoperable

code that works with multiple cloud vendors.
• There’s an article on the Simple Cloud API in the

developerWorks Open Source zone: bit.ly/1bSkTx

The Simple Cloud API

• Covers three areas:
• File storage (S3, Nirvanix, Azure Blob Storage, Rackspace

Cloud Files)
• Document storage (SimpleDB, Azure Table Storage)
• Simple queues (SQS, Azure Table Storage)

• Uses the Factory and Adapter design patterns
• A configuration file tells the Factory object which adapter to

create.

Dependency injection

• The Simple Cloud API uses dependency injection to do its
magic.

• A sample configuration file:
storage_adapter =
"Zend_Cloud_StorageService_Adapter_Nirvanix"

auth_accesskey = "338ab839-ac72870a"
auth_username = "skippy"
auth_password = "/p@$$w0rd"
remote_directory = "/dougtidwell"

Dependency injection

• A different configuration file:
storage_adapter =
"Zend_Cloud_StorageService_Adapter_S3"

aws_accesskey = "ac72870a-338ab839"
aws_secretkey = "/par$w3rd"
bucket_name = "dougtidwell"

Vendor-specific APIs

• Listing all the items in a Nirvanix directory:
$auth = array('username' => 'your-username',

'password' => 'your-password',
'appKey' => 'your-appkey');

$nirvanix = new Zend_Service_Nirvanix($auth);
$imfs = $nirvanix->getService('IMFS');
$args = array('folderPath' => '/dougtidwell',

'pageNumber' => 1,
'pageSize' => 5);

$stuff = $imfs->ListFolder($args);

• All of these lines of code are specific to Nirvanix.

Vendor-specific APIs

• Listing all the items in an S3 bucket:
$s3 = new Zend_Service_Amazon_S3

($accessKey, $secretKey);
$stuff = $s3->getObjectsByBucket($bucketName);

• All of these lines of code are specific to S3.

The Simple Cloud Storage API

• Listing all the items in a Nirvanix directory or S3 bucket:
$credentials =

new Zend_Config_Ini($configFile);
$stuff = Zend_Cloud_StorageService_Factory

::getAdapter($credentials)->listItemslistItems();

• These lines of code work with Nirvanix and S3 (and
Rackspace, etc.).
• Which adapter is created and which storage service is used

depends on the configuration file.

Methods

• The storage API supports several common operations:
• storeItem(), fetchItem() and deleteItem()
• copyItem(), moveItem() and renameItem()
• listFolders() and listItems()
• storeMetadata(), fetchMetadata() and
deleteMetadata()

• Not all of these are supported natively.
• More on this in a minute.

Demo time!

• We’ll look at a file browser built on the Simple Cloud
storage API.

Issues

• Not all storage services support renaming files.
• You can hack this, but....

• Not all storage services support listing containers.
• What’s the best way to handle this?

• Introspection?
• instanceof?
• XSLT style? system-property
('sc:supports-rename')

• We need your input!

The Simple Cloud Queue API

• The queue API supports message queueing services from
Amazon and Azure.
• Although you’re free to implement your own adapter.

• Supported methods:
• createQueue(), deleteQueue() and listQueues()
• sendMessage(), receiveMessages() and
deleteMessage()

• fetchQueueMetadata() and storeQueueMetadata()

Demo time!

• We’ll look at a message queue monitor built with the
Simple Cloud queue API.

Issues

• How many messages are in a queue?
• SQS lets you ask, Azure doesn’t.

• Can I peek a message?
• Azure lets you peek, SQS doesn’t.

The Simple Cloud Document API

• Supports basic database services such as Amazon’s
SimpleDB and Azure Table Services.

• Supported methods:
• createCollection(), deleteCollection() and
listCollections()

• insertDocument(), replaceDocument(),
updateDocument(), deleteDocument() and
fetchDocument()

• query() and select()

Issues

• The query languages and database functions for cloud
database services are wildly divergent.
• Some are relational, most are not
• Some support schemas, most do not
• Some support concurrency, most do not

Writing your own adapter

• To write your own adapter, you have to implement all of
the methods of the particular interface.
• StorageService/Adapter, QueueService/Adapter, etc.

• If the cloud vendor you’re targeting already has a library (a
Level 3 API) for the service, you’re 80% there:
public function listFolders($path = null,

$options = null) {
return

$this->_connection->list_containers();
}

Controlling VMs with
Apache

Apache

• A common library for controlling VMs in the cloud
• Create, destroy, reboot and list instances, list and start

images
• incubator.apache.org/libcloud

Apache

• libcloud currently supports a
couple dozen cloud
providers.

• Most of the adapters support
all of the functions in the
libcloud API.

Let’s look at some code!

Apache libcloud

• Find all the VMs I have running in the Amazon and
Rackspace clouds:

def _get_drivers(self):
EC2 = get_driver(Provider.EC2_US_EAST)
Rackspace = get_driver(Provider.RACKSPACE)
return [Rackspace(secrets.RACKSPACE_ACCESS_ID,

secrets.RACKSPACE_SECRET_KEY),
EC2(secrets.EC2_ACCESS_ID,

secrets.EC2_SECRET_KEY)]

The libcloud interface

• list_images()
• create_node()
• reboot_node()
• destroy_node()
• list_nodes()
• list_sizes()
• list_locations()
• get_uuid()

Demo

• We’ll use some Python code that lists all of the images and
instances we have running at Rackspace.
• For each image, we can start a new instance.
• For each instance, we can terminate or reboot it.

• Then we’ll run the code again, listing the Amazon images
and instances as well.

Openness in action

• IBM has contributed a Java implementation of libcloud:
• https://svn.apache.org/repos/asf/incubator/

libcloud/sandbox/java/trunk/
• The Java implementation includes the basic framework

plus an adapter for the IBM Smart Business Cloud.
• Other adapters are underway...

Summary / Resources / Next steps

Get Involved!

• Simple Cloud API
• Download the code, build a prototype, submit requirements /

new adapters / bug reports
• simplecloud.org

• libcloud
• incubator.apache.org/libcloud

cloudusecases.org

• The Cloud Computing Use
Cases group is focused on
documenting customer
requirements.

• Covers Security, SLAs,
developer requirements and
cloud basics.

•• Join us!Join us!

Also available in Chinese

Also available in Japanese

• Chinese discussion group on
LinkedIn:
• linkedin.com/groups?gid=

2919533& trk=myg_ugrp_ovr
• Japanese discussion group

and translated paper coming
soon!

developerWorks cloud zone

• Dozens of articles on cloud computing, including introductions,
code samples, tutorials and podcasts.

• ibm.com/developerworks/cloud

Where we’re headed

• <hype>
Cloud computing will be the biggest
change to IT since the rise of the Web.

</hype>

• But to make the most of it, we have to keep things open.
• And everybody has to get involved to make that happen.

Thanks!
Doug Tidwell
Cloud Computing Evangelist
dtidwell@us.ibm.com

This is session 7665.

